Modeling and Simulation of CO2 Absorption Enhancement in Hollow-Fiber Membrane Contactors using CNT–Water-Based Nanofluids
نویسنده
چکیده مقاله:
Absorption of CO2 from a gas mixture containing CO2 and nitrogen by water-based CNT nanofluids in gas–liquid hollow fiber membrane contactor was modeled and solved using COMSOL Multiphysics 5.4. The model assumed partial wetting of the membrane, along with diffusion in the axial and radial directions. In addition, Brownian motion and grazing effects were both considered in the model. The main contribution to the mass transfer resistance for the case of external diffusion-controlled adsorption is the stagnant liquid layer around the particles, despite the layer being very thin. Accordingly, the nanofluid flows in the lumen tube side of the hollow fiber membrane was modeled as a solid-free zone and dense solid phase. The simulations were performed using 7% wetting of the membrane thickness. The results showed a significant increase in CO2 absorption with increasing concentration of carbon nanotubes (CNT). At a fixed inlet gas flow rate (20 L/h), increasing the CNT concentration from 0.1 wt.% to 0.25 wt.% increased the CO2 removal from around 20% to 45%. Comparison of the model predictions with experimental data available in the literature confirmed the validity of the developed model.
منابع مشابه
Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors
Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite...
متن کاملSeparation of Carboxylic Acids from Aqueous Solutions using Hollow Fiber Membrane Contactors
Separation of formic, acetic, and propionic acids from the aqueous stream using membrane solvent extraction has been studied using three different membrane contactors made of polysulfone (PS), polyethersulfone (PES), and polyvinylidene fluoride (PVDF) using two different solvents; including ethyl acetate (EA) and diisopropyl ether (DIPE). The efciency of the membrane and e...
متن کاملCO2 Capture by Dual Hollow Fiber Membrane Systems
In this paper, a system for efficient removal of carbon dioxide by hollow fiber membranes is proposed. The system is compact, and it is very useful for application in the offshore energy industries. In particular, it is used to removing CO2 from the exhaust of power generation facilities on offshore platforms.The proposed dual membrane contactor contains two types of membranes (polypropylene me...
متن کاملGas Permeation Modeling through a Multilayer Hollow Fiber Composite Membrane
In this study, a time-dependent 2D axisymmetric model of a multilayer hollow fiber composite membrane for gas separation is proposed. In spite of the common multilayer membranes, which a dense layer coated on a porous support layer and subjected into the feed stream, here, the porous support is exposed to the feed gas. In this regard, the governing equations of species transport are developed f...
متن کاملPossibility of the Use of Hollow Fiber Membrane Contactors for Phenol Biodegradation in Saline Solutions
A microporous polypropylene (PP) hollow fiber membrane contactor was used as a reactor to biodegrade phenol in high-salinity solutions by Pseudomonas putida CCRC14365 at 30C. Suspended cells grew only at a NaCl concentration below 2.5 wt%. On the other hand, cells within hollow fibers completely degraded 0.5 g/L of phenol in solution containing NaCl up to 8.6 wt%, likely due to the fact that th...
متن کاملModeling Multicomponent Gas Separation Using Hollow-Fiber Membrane Cohtactors
A model developed for multicomponent gas separation using hollow-fiber contactors permits simulation of cocurrent, countercurrent, and crossflow contacting patterns with permeate purging (or sweep). The numerical approach proposed permits simulation to much higher stage cuts than previously published work and provides rapid and stable solutions for cases with many components, with widely varyin...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 4
صفحات 295- 302
تاریخ انتشار 2019-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023